The shapes of the curves have been analyzed by constructing difference tables, as described in appendix A. If we express the resistance as a power series function of the pressure $R=R_{0}\left(1+A p+B p^{2}+C p^{3} \ldots\right)$, the coefficients A, B, C may be obtained from the difference tables. Only these three coefficients are needed to express our experimental results; they are included in table 4.

Table 3. A comparison of results for the ideal resistivity of potassium at zero pressure

T (${ }^{\circ} \mathrm{K}$)	$\rho_{i} / T^{*}\left(10^{-8} \Omega \mathrm{~cm} \mathrm{degK}{ }^{-1}\right)$			(4)
	(1) \dagger	(2) \dagger	(3)	
273.15	$2 \cdot 360_{1}$	$2 \cdot 360_{1}$	$2 \cdot 360_{1}$	1.000
$170 \cdot 9_{4}$	$2 \cdot 133_{7}$	-	2.061	1.035
108.79	1.979_{6}	-	1.872	1.058
$90 \cdot 5$	1.919_{1}	-	1.793	1.070
$90 \cdot 21$	1.906_{4}	-	1.791	1.064
$87 \cdot 8$	-	1.836 ${ }_{2}$	1.780	1.031
$77 \cdot 6$	-	$1.774{ }_{6}$	1.721	1.031
$72 \cdot 9$	1.816_{2}	-	1-689	1.075
$72 \cdot 20$	1.798_{3}	-	1.685	1.067
$56 \cdot 8$	1.649_{5}	-	1.538	1.073
56.41	$1 \cdot 662_{1}$	-	1.532	1.085
$20 \cdot 62$	0.633_{9}	-	0.565	1-122
$20 \cdot 42$	0.638_{6}	0.619 。	$0 \cdot 556$	$\left\{\begin{array}{l}1 \cdot 150 \\ 1 \cdot 113\end{array}\right.$
18.47	0.533_{8}	-	0.471	$1 \cdot 144$
17.19	0.471_{2}	-	$0 \cdot 414$	1.138
16.39	$0.432{ }_{6}$	-	$0 \cdot 379$	$1 \cdot 141$
14.27	0.336_{4}	-	0.288	1-168

* Normalized to $2.3601 \times 10^{-8} \Omega \mathrm{~cm}$ deg K^{-1} at $273.15^{\circ} \mathrm{K}$.
\dagger Specimens in glass capillary tubes.
(1) Results from Woltjer \& Kamerlingh Onnes (1924).
(2) Results from Meissner \& Voigt (1930).
(3) This work.
(4) ρ_{i} (capillary specimen) $/ \rho_{i}$ (bare wire).

$3 \cdot 1 \cdot 3$. The correction to constant density conditions

This correction is made in the way described in appendix A. The results of the calculations are given in tables 2 and 4 and they are also illustrated in figures 1 and 2 . The systematic error given in table. 2 arises from uncertainties in the equation of state of potassium; the error limits we have quoted are based on the supposition that atroom temperature the error in the value of p^{\prime}, the pressure required to increase the density of potassium to its value at $0^{\circ} \mathrm{K}$ under zero pressure, is 3%.

3.2. Sodium

The results for sodium are similar in general form to those for potassium. Below about $40^{\circ} \mathrm{K}$ there is, however, the extra complication of the martensitic transformation (cf. Dugdale \& Gugan 1960). Details of the specimens studied are given in table 5.

